Land and oceans
White roofs could cool cities: study
Enzyme crystal helps crack HIV puzzle
Sugar sweetens decision making
Twilight zone secrets revealed
Astronomers spot asteroid collision
Algae master quantum mechanics
Protein 'ushers' key to beating malaria
Researchers spin artificial bee silk
New view of Pluto increases mystery
Cell's power packs came from within
Antarctic snow linked to WA dry
Termites inspire hydrophobic materials
Study shows why it's scary to lose money
Soil impact underestimated: climate study
Lack of oxygen forced fish's first breath
Harder Sudoku puzzles on the way?
Weed genes could help feed the world
Logging makes forests more flammable: study
Food crisis looms warn scientists
Tiny sensors track 'lost' objects
'Climategate' university orders review
'Plumbing' key to flowering success
New twist on solar cell design
Scientists set new temperature record
Earliest animals flexed their muscles
A group of British and Canadian palaeontologists have found fossils that show the earliest evidence of animal locomotion.

The team from the University of Oxford and Memorial University of Newfoundland, found fossilised trails left by Ediacarans, an enigmatic assemblage of soft-bodied creatures that lived 30 million years before modern animals evolved.

The find, in 565 million-year-old rocks at Mistaken Point in Newfoundland, Canada, appears in the current issue of the journal Geology.

The discovery of 70 fossilised trails, each about 5 to 17 centimetres long, is comparable to the kinds of marks left in the sea floor by modern animals like sea anemones, the researchers say.

Although they can't pin the trails to a specific creature, the discovery shows at least some of the Ediacarans were mobile, and hence must have had muscles.

Similarities in the trails to the modern-day anemone Urticina suggest the organisms that left the fossil traces may have had a muscular 'foot', the researchers say.

"This is exciting because it is the first evidence that creatures from this early period of Earth's history had muscles to allow them to move around, enabling them to hunt for food or escape adverse local conditions and, importantly, indicating that they were probably animals," says University of Oxford PhD student Alex Liu.

The Ediacarans are the earliest complex organisms before the Cambrian 'explosion of life' which marked the development of modern complex life.

But debate continues over just exactly what the Ediacarans looked like, or even what they were.
Stranger than fiction

"Some of the later species - particularly in Australia and the White Sea - do in my view seem to be early animals," says Lui. "But the morphological characteristics of earlier forms, [such as] those in Newfoundland, leave their biological affinities difficult to resolve at present - though we are working on it."

Professor Pat Vickers-Rich of Monash University in Melbourne, has recently been studying Ediacaran fossils in Namibia. She says palaeontologists originally thought the Ediacarans were jellyfish, worms and soft corals.

"Now we know they are so different to anything we know today," she says.

"Some of them were absorbers, absorbing their nutrients directly through the chemical environment with no mouth parts at all. Others, like Rangea had a kind of proboscis that grazed microbial mats."

Vickers-Rich says the Namibian fossils, from a locality called the Nama group in southern Namibia, represents the "last gasp of the Ediacaran fauna".

No one knows how the Ediacarans became extinct, but Rich hypothesises it may have been due to a build up of oxygen and changing oceanic chemistry, which may have favoured the new Cambrian animals.

Horny mother beetles fight for dung
Light-speed computing one step closer
Small asteroids 'just lumps of gravel'
Gene study reveals diverse gut zoo
Dinosaur extinction caused by asteroid: study
Study finds methane bubbling from Arctic
New view reveals Mars' icy history
Some nano-sunscreens 'come at a cost'
Dust bunnies could harbour toxic load
Aphid genome reveals its 'Achilles heel'
Tailored diet may slow down DNA damage
Scientist probe ballistic chameleon tongue
Moa eggshells yield ancient DNA
Toothbrush tech helps buses go green
Gene protects some Tassie devils from tumour
Smaller fish cope better with acidic water
Lunar mirror mystery solved
Parents give fewer bad genes than thought
Women on pill may live longer
Antarctic winds affect key ocean layer
Researchers uncover thalidomide mystery
Boost for evidence of early ocean
Ocean geoengineering may prove lethal
People leave unique 'germ print'
Rogue star on collision course
Butterflies 'fly early as planet warms'
Glaucoma may start in the brain
Tools push back dates for humans on Flores
Stem cell capsules to target broken bones
Ecstasy damages complex memory: study
Earliest animals flexed their muscles
Insomnia may shrink the brain: study
Experts call for 'resilience thinking'
Tutu's DNA could point to medical cures
Humble algae key to whale evolution
Happiness linked to healthy heart
Fewer cyclones, but more intense: study
Cosmic candles result of colliding stars
Flightless mosquitoes may curb dengue
Childhood poverty may leave its mark
Cautious response to technology strategy
Nanowire RAM to make ever-ready computers
Are non-smokers smarter than smokers?
There's iron in them thar Martian hills
'Shell Crusher' shark swam ancient oceans
Nanotechnology may tap into your mind
Small dogs originated in the Middle East
Brain 'hears' sound of silence
Swimmers 'may not understand' tsunami risk
Altruism surfaces on slow-sinking ship
Chile quake tops Haiti, but less deadly
Weedkiller 'makes boy frogs lay eggs'
Visit Statistics